In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.

نویسندگان

  • Linbo Wu
  • Jiandong Ding
چکیده

In vitro degradation behaviors of three-dimensional tissue engineering porous scaffolds made from amorphous poly(D,L-lactide-co-glycolide) with three different formulations have been systematically investigated up to 26 weeks in phosphate buffer saline solution at 37 degrees C. The following properties of the scaffolds were measured as a function of degradation time: dimensions, weight, compressive strength and modulus, polymer molecular weight and its distribution, and pore morphology. Of special interest was the determination of mechanical properties in wet environment. The pH of the PBS media was also detected. According to the characteristic changes of the various properties of porous scaffolds, the degradation process is suggested to be roughly divided into three stages tentatively named as quasi-stable stage, decrease-of-strength stage, loss-of-weight and disruption-of-scaffold stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine.

Porous scaffolds fabricated from biocompatible and biodegradable polymers play vital roles in tissue engineering and regenerative medicine. Among various scaffold matrix materials, poly(lactide-co-glycolide) (PLGA) is a very popular and an important biodegradable polyester owing to its tunable degradation rates, good mechanical properties and processibility, etc. This review highlights the prog...

متن کامل

Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.

Strategies to engineer bone have focused on the use of natural or synthetic degradable materials as scaffolds for cell transplantation or as substrates to guide bone regeneration. The basic requirements of the scaffold material are biocompatibility, degradability, mechanical integrity, and osteoconductivity. A major design problem is satisfying each of these requirements with a single scaffold ...

متن کامل

The Influence of Copolymer Composition on PLGA/nHA Scaffolds’ Cytotoxicity and In Vitro Degradation

The influence of copolymer composition on Poly(Lactide-co-Glycolide)/nanohydroxyapatite (PLGA/nHA) composite scaffolds is studied in the context of bone tissue engineering and regenerative medicine. The composite scaffolds are fabricated by thermally-induced phase separation and the effect of bioactive nanoparticles on their in vitro degradation in phosphate-buffered solution at 37 °C is analyz...

متن کامل

Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.

For some bone tissue engineering strategies, direct contact of newly synthesized bone with a scaffold is important for structural continuity and stability at the scaffold/bone interface. Thus, as the polymer degrades, the support function of the scaffold could be adopted by the developing bone structure. This study was designed to determine whether poly(DL-lactide-co-glycolide) with a comonomer...

متن کامل

Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering

Electrospinning is a long-known polymer processing technique that has received more interest and attention in recent years due to its versatility and potential use in the field of biomedical research. The fabrication of three-dimensional (3D) electrospun matrices for drug delivery and tissue engineering is of particular interest. In the present study, we identified optimal conditions to generat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 25 27  شماره 

صفحات  -

تاریخ انتشار 2004